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Distributed Computing

▶ Focus on LOCAL and CONGEST models

▶ Every vertex is a machine

▶ Computation is done in rounds

▶ At the end of each round, vertices can communicate with
neighbors

▶ In CONGEST model, message lengths are limited to
O(log n)

▶ In LOCAL model, message lengths are unbounded



Weighted Local Constraint Satisfaction Problems

▶ Most distributed work focuses on arbitrary feasible solution
▶ Goal is to sample labelings from a weighted local CSP:

(G , L, C)
▶ Base graph G = (V ,E )
▶ Set of labels L
▶ Set of constraints C

▶ A labeling is a function from V → L

▶ For C ⊆ V , a constraint on C is a function from LC → R≥0

▶ Weight of a labeling ℓ =
∏

C∈C C (ℓC )

▶ Local, if every constraint has bounded diameter



Sampling Weighted Local CSPs

▶ We want to sample labelings proportional to their weights∏
C∈C C (ℓC )

▶ Examples: uniform colorings, hardcore model, ...
▶ Hardcore model: independent sets with parameter λ > 0,

where the weight of set I is λ|I |

▶ L = {0, 1}

▶ C1 =

{
Cv (ℓ) =

{
1, if ℓv = 0

λ, if ℓv = 1
: v ∈ V

}
▶ C2 =

{
Cu,v (ℓ) =

{
0, if ℓu = ℓv = 1

1, otherwise
: {u, v} ∈ E

}
▶ C = C1 ∪ C2



Hardcore Model

weight = λ2 weight = λ weight = 1 weight = 0



Local Metropolis

▶ Feng, Sun, and Yin (PODC ’17) proposed a distributed
Markov chain for sampling from many weighted local CSPs

▶ Every vertex proposes a new label at each step

▶ Each proposal is accepted or rejected

▶ Fischer and Ghaffari (DISC ’18) as well as Feng, Hayes, and
Yin (arXiv ’18) improved algorithm by limiting proposals to
marked vertices

▶ For many important weighted local CSPs, mixes in O(log n)
CONGEST or LOCAL rounds



Markov Chain for Colorings

▶ Start from arbitrary coloring X
▶ Each round proceeds as follows

▶ Each vertex is marked active with probability p
▶ Each active vertex v randomly proposes a color, σv
▶ Set Xv = σv , if for all {u, v} ∈ E

▶ σv ̸= σu

▶ σv ̸= Xu

▶ σu ̸= Xv



Our Results

▶ Markov chain simulation gives approximate sampling
▶ Exact markov chain sampling is possible in sequential setting

▶ Coupling from the past: Propp, Wilson (Random Structures &
Algorithms ’96)

▶ Bounding chains: Huber (STOC ’98) & Häggström, Nelander
(Scandinavian Journal of Statistics ’99)

▶ We show exact distributed sampling is also possible in some
cases

▶ We have a general condition for O(log n) exact sampling in
the LOCAL model (stronger condition in CONGEST model)



Our Results (Hardcore Model)

▶ Our approach:
O(log n) Certifiable ✓ CONGEST sampling when λ < 1

∆

▶ Guo, Jerrum, Liu (STOC ’17):
O(log n) CONGEST sampling when λ < 1

2
√
e∆−1

▶ Feng, Yin (PODC ’18):

O(log3 n) LOCAL sampling when λ < (∆−1)∆−1

(∆−2)∆

▶ Lower bounds (LOCAL model):
▶ Ω(log n): Guo, Jerrum, Liu (STOC ’17)

▶ Ω(n1/11) for λ > (∆−1)∆−1

(∆−2)∆
: Feng, Sun, and Yin (PODC ’17)



Open Questions

▶ Can we achieve LOCAL hardcore model lower bound in
CONGEST?

▶ Can our approach be extended to other local weighted CSPs?
Most importantly, colorings?

▶ Can our algorithm run faster in all-to-all models?


