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Distributed Computing
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Focus on LOCAL and CONGEST models
Every vertex is a machine
Computation is done in rounds

At the end of each round, vertices can communicate with
neighbors

In CONGEST model, message lengths are limited to
O(log n)
In LOCAL model, message lengths are unbounded



Weighted Local Constraint Satisfaction Problems

» Most distributed work focuses on arbitrary feasible solution

» Goal is to sample labelings from a weighted local CSP:
(G,L,C)
» Base graph G = (V, E)
» Set of labels L
» Set of constraints C

A labeling is a function from V — L

For C C V, a constraint on C is a function from L¢ — R=0
Weight of a labeling £ =[] C(lc)

Local, if every constraint has bounded diameter



Sampling Weighted Local CSPs

> We want to sample labelings proportional to their weights
[Tcec Cllc)
» Examples: uniform colorings, hardcore model, ...

» Hardcore model: independent sets with parameter A > 0,
where the weight of set / is Al'l
> L ={0,1}

>0 = {cv(z)— {i";i:g ve v}
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1, otherwise
> C=CiUCy



Hardcore Model
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Local Metropolis

» Feng, Sun, and Yin (PODC '17) proposed a distributed
Markov chain for sampling from many weighted local CSPs

» Every vertex proposes a new label at each step
» Each proposal is accepted or rejected

» Fischer and Ghaffari (DISC '18) as well as Feng, Hayes, and
Yin (arXiv '18) improved algorithm by limiting proposals to
marked vertices

» For many important weighted local CSPs, mixes in O(log n)
CONGEST or LOCAL rounds



Markov Chain for Colorings

» Start from arbitrary coloring X
» Each round proceeds as follows

» Each vertex is marked active with probability p
» Each active vertex v randomly proposes a color, o,
» Set X, =o,, if for all {u,v} € E

> o, # oy

> o, 7é Xu

> o, # X,



Our Results

» Markov chain simulation gives approximate sampling
» Exact markov chain sampling is possible in sequential setting
» Coupling from the past: Propp, Wilson (Random Structures &
Algorithms '96)
» Bounding chains: Huber (STOC '98) & Haggstrom, Nelander
(Scandinavian Journal of Statistics '99)
> We show exact distributed sampling is also possible in some
cases

» We have a general condition for O(log n) exact sampling in
the LOCAL model (stronger condition in CONGEST model)



Our Results (Hardcore Model)

» Our approach:

O(log n) Certifiable v CONGEST sampling when A < %
» Guo, Jerrum, Liu (STOC '17):

O(log n) CONGEST sampling when \ <
» Feng, Yin (PODC '18):

A-1

O(log® n) LOCAL sampling when \ < %

» Lower bounds (LOCAL model):
> Q(log n): Guo, Jerrum, Liu (STOC '17)

> Q(n'/11) for A > %: Feng, Sun, and Yin (PODC '17)
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Open Questions

» Can we achieve LOCAL hardcore model lower bound in
CONGEST?

» Can our approach be extended to other local weighted CSPs?
Most importantly, colorings?

» Can our algorithm run faster in all-to-all models?



